

Case Study: Low Flow Measurement in a Small Channel Using Teledyne RDI's StreamPro ADCP with a Customer-Made Traveler System

Andrew Willsman at NIWA (National Institute of Water and Atmospheric Research Ltd., New Zealand) Dunedin office recently conducted a flow measurement with a Teledyne RDI's StreamPro using the low noise mode in a low velocity channel, 2.6m wide with a maximum depth of 0.3m (Figure 1). Flow measurement transects were made using Andrew's newly developed traveler system that can run a StreamPro float at variable speed (0.5cm/s to 10cm/s) with remote stop, start, and direction control.

The Traveler was set at a speed of ~1cm/s (Figure 2) to traverse the section in greater than 3 minutes. Slow and steady float speed and the StreamPro low noise mode generated high precision velocity data (Figure 3). The flow result of 37 l/s (Table 1) had a coefficient of variation of 2% which was very good compared to all prior measurements at this site with the Streampro which typically varied by +/- 10% from the mean flow result.

For detailed information on the case study and the Traveler system, please contact Andrew Willsman or John Fenwick by Email:a.willsman@niwa.co.nz or j.fenwick@niwa.co.nz.



Figure 1 StreamPro with a Traveler system during a transect

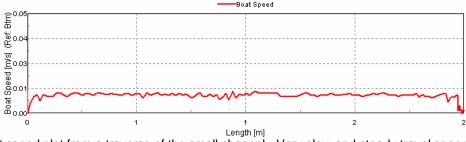


Figure 2: Float speed plot from a traverse of the small channel. Very slow and steady travel speed was achieved by the Travel system, which ensures the high quality flow measurements in such small channel

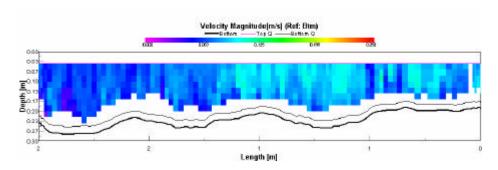


Figure 3: A velocity magnitude plot. Slow and steady float speed and the StreamPro low noise mode generated high precision velocity data

Table 1: Flow results from 9 traverses of the small channel

Traverse No.	Total Q	Total Area	Width	Boat Speed	Flow Speed	Duration
	[m³/s]	[m²]	[m]	[m/s]	[m/s]	[s]
1	0.037	0.55	2.6	0.008	0.072	308
2	0.036	0.57	2.68	0.011	0.067	210
3	0.036	0.57	2.66	0.013	0.069	188
4	0.037	0.55	2.62	0.01	0.072	226
5	0.036	0.56	2.65	0.009	0.069	292
6	0.038	0.59	2.76	0.008	0.068	326
7	0.036	0.56	2.66	0.008	0.068	300
8	0.036	0.56	2.68	0.008	0.068	312
9	0.037	0.55	2.61	0.008	0.07	302
Average	0.037	0.56	2.66	0.009	0.069	
Std. Dev.	0.001	0.01	0.05	0.002	0.002	
Std./ Avg.	0.02	0.02	0.02	0.2	0.03	